Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Curr Top Med Chem ; 23(5): 371-388, 2023.
Article in English | MEDLINE | ID: covidwho-2295851

ABSTRACT

Iridoids are secondary plant metabolites that are multitarget compounds active against various diseases. Iridoids are structurally classified into iridoid glycosides and non-glycosidic iridoids according to the presence or absence of intramolecular glycosidic bonds; additionally, iridoid glycosides can be further subdivided into carbocyclic iridoids and secoiridoids. These monoterpenoids belong to the cyclopentan[c]-pyran system, which has a wide range of biological activities, including antiviral, anticancer, antiplasmodial, neuroprotective, anti-thrombolytic, antitrypanosomal, antidiabetic, hepatoprotective, anti-oxidant, antihyperlipidemic and anti-inflammatory properties. The basic chemical structure of iridoids in plants (the iridoid ring scaffold) is biosynthesized in plants by the enzyme iridoid synthase using 8-oxogeranial as a substrate. With advances in phytochemical research, many iridoid compounds with novel structure and outstanding activity have been identified in recent years. Biologically active iridoid derivatives have been found in a variety of plant families, including Plantaginaceae, Rubiaceae, Verbenaceae, and Scrophulariaceae. Iridoids have the potential of modulating many biological events in various diseases. This review highlights the multitarget potential of iridoids and includes a compilation of recent publications on the pharmacology of iridoids. Several in vitro and in vivo models used, along with the results, are also included in the paper. This paper's systematic summary was created by searching for relevant iridoid material on websites such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, and others. The compilation will provide the researchers with a thorough understanding of iridoid and its congeners, which will further help in designing a large number of potential compounds with a strong impact on curing various diseases.


Subject(s)
Iridoid Glycosides , Iridoids , Iridoids/pharmacology , Iridoids/chemistry , Iridoids/metabolism , Plants , Plant Extracts/chemistry , Monoterpenes , Antioxidants
2.
Saudi J Biol Sci ; 28(12): 7567-7574, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1447149

ABSTRACT

BACKGROUND AND OBJECTIVE: Coronavirus 2019 (COVID-19) is caused by 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2), first reported in Wuhan, China in December 2019, which eventually became a global disaster. Various key mediators have been reported in the pathogenesis of COVID-19. However, no effective pharmacological intervention has been available to combat COVID-19 complications. The present study screens nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) as potential inhibitors of this present generation coronavirus infection using an in-silico approach. MATERIALS AND METHODS: The SARS-CoV-2 proteins (nucleocapsid, proteases, post-fusion core, phosphatase, endoriboruclease) and ACE-2 protein were selected. The 2D structure of nicotinamide ribonucleoside and nicotinamide ribonucleotide was drawn using ChemDraw 14.0 and saved in .cdx format. The results were analyzed using two parameters: full fitness energy and binding free energy (ΔG). RESULTS: The full fitness energy and estimated ΔG values from docking of NM, and NMN with selected SARS-CoV-2 target proteins, ADMET prediction and Target prediction indicate the interaction of NR and NMN in the treatment of COVID-19. CONCLUSIONS: Based on full fitness energy and estimated ΔG values from docking studies of NM and NAM with selected SARS-CoV-2 target proteins, ADME prediction, target prediction and toxicity prediction, we expect a possible therapeutic efficacy of NR in the treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL